Effects of Acute Aerobic Exercise on Response Inhibition in Adult Patients with ADHD


  • 1.

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). (American Psychiatric Publishing Inc., 2013).

  • 2.

    Barkley, R. A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychological bulletin 121, 65–94 (1997).

  • 3.

    Mostofsky, S. H. & Simmonds, D. J. Response Inhibition and Response Selection: Two Sides of the Same Coin. J Cogn Neurosci 20, 751–761, https://doi.org/10.1162/jocn.2008.20500 (2008).

  • 4.

    Quay, H. C. Inhibition and attention deficit hyperactivity disorder. J Abnorm Child Psychol 25, 7–13 (1997).

  • 5.

    Rubia, K., Smith, A. B., Brammer, M. J., Toone, B. & Taylor, E. Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry 162, 1067–1075, https://doi.org/10.1176/appi.ajp.162.6.1067 (2005).

  • 6.

    Hart, H., Radua, J., Nakao, T., Mataix-Cols, D. & Rubia, K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry 70, 185–198, https://doi.org/10.1001/jamapsychiatry.2013.277 (2013).

  • 7.

    Bush, G. Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biological psychiatry 69, 1160–1167, https://doi.org/10.1016/j.biopsych.2011.01.022 (2011).

  • 8.

    Dickstein, S. G., Bannon, K., Castellanos, F. X. & Milham, M. P. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 47, 1051–1062, https://doi.org/10.1111/j.1469-7610.2006.01671.x (2006).

  • 9.

    Bush, G., Valera, E. M. & Seidman, L. J. Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 57, 1273–1284, https://doi.org/10.1016/j.biopsych.2005.01.034 (2005).

  • 10.

    Hart, H. et al. Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp 35, 3083–3094, https://doi.org/10.1002/hbm.22386 (2014).

  • 11.

    Cortese, S. et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry 169, 1038–1055, https://doi.org/10.1176/appi.ajp.2012.11101521 (2012).

  • 12.

    Ebert, D., Krause, J. & Roth-Sackenheim, C. [ADHD in adulthood–guidelines based on expert consensus with DGPPN support]. Nervenarzt 74, 939–946 (2003).

  • 13.

    AWMF. S3 Leitlinie Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) im Kindes-, Jugend- und Erwachsenenalter (2018).

  • 14.

    National Institute for Health and Care Excellence. Attention deficit hyperactivity disorder: diagnosis and management of ADHD in children, young people and adults – National Clinical Practice Guideline Number 72 (2008).

  • 15.

    Wilens, T. E., Spencer, T. J. & Biederman, J. A review of the pharmacotherapy of adults with attention-deficit/hyperactivity disorder. J Atten Disord 5, 189–202 (2002).

  • 16.

    Philipsen, A. Psychotherapy in adult attention deficit hyperactivity disorder: implications for treatment and research. Expert Rev Neurother 12, 1217–1225, https://doi.org/10.1586/ern.12.91 (2012).

  • 17.

    Smith, B. H., Barkley, R. A. & Shapiro, C. J. In Treatment of childhood disorders (eds Mash, E. J. & Barkley, R. A.) 65–136 (2006).

  • 18.

    Smith, B. H., Waschbusch, D. A., Willoughby, M. T. & Evans, S. The efficacy, safety, and practicality of treatments for adolescents with attention-deficit/hyperactivity disorder (ADHD). Clin Child Fam Psychol Rev 3, 243–267 (2000).

  • 19.

    Chang, Y.-K., Labban, J., Gapin, J. & Etnier, J. L. The effects of acute exercise on cognitive performance: a meta-analysis. Brain research 1453, 87–101, https://doi.org/10.1016/j.brainres.2012.02.068 (2012).

  • 20.

    McMorris, T. & Hale, B. J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain Cogn 80, 338–351, https://doi.org/10.1016/j.bandc.2012.09.001 (2012).

  • 21.

    Cerrillo-Urbina, A. J. et al. The effects of physical exercise in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis of randomized control trials. Child Care Health Dev 41, 779–788, https://doi.org/10.1111/cch.12255 (2015).

  • 22.

    Chang, Y.-K., Liu, S., Yu, H.-H. & Lee, Y.-H. Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch Clin Neuropsychol 27, 225–237, https://doi.org/10.1093/arclin/acr094 (2012).

  • 23.

    Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L. & Hillman, C. H. Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J Pediatr 162, 543–551, https://doi.org/10.1016/j.jpeds.2012.08.036 (2013).

  • 24.

    Medina, J. A. et al. Exercise impact on sustained attention of ADHD children, methylphenidate effects. ADHD 2, 49–58, https://doi.org/10.1007/s12402-009-0018-y (2010).

  • 25.

    Piepmeier, A. T. et al. The effect of acute exercise on cognitive performance in children with and without ADHD. Journal of Sport and Health Science 4, 97–104, https://doi.org/10.1016/j.jshs.2014.11.004 (2015).

  • 26.

    Ludyga, S. et al. An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Dev Cogn Neurosci 28, 21–28, https://doi.org/10.1016/j.dcn.2017.10.007 (2017).

  • 27.

    Chuang, L.-Y., Tsai, Y.-J., Chang, Y.-K., Huang, C.-J. & Hung, T.-M. Effects of acute aerobic exercise on response preparation in a Go/No Go Task in children with ADHD: An ERP study. Journal of Sport and Health Science 4, 82–88, https://doi.org/10.1016/j.jshs.2014.11.002 (2015).

  • 28.

    Den Heijer, A. E. et al. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review. J Neural Transm (Vienna) 124, 3–26, https://doi.org/10.1007/s00702-016-1593-7 (2017).

  • 29.

    Gapin, J. I., Labban, J. D., Bohall, S. C., Wooten, J. S. & Chang, Y.-K. Acute exercise is associated with specific executive functions in college students with ADHD: A preliminary study. Journal of Sport and Health Science 4, 89–96, https://doi.org/10.1016/j.jshs.2014.11.003 (2015).

  • 30.

    Fritz, K. M. & O’Connor, P. J. Acute Exercise Improves Mood and Motivation in Young Men with ADHD Symptoms. Med Sci Sports Exerc 48, 1153–1160, https://doi.org/10.1249/MSS.0000000000000864 (2016).

  • 31.

    Mehren, A. et al. Acute Effects of Aerobic Exercise on Executive Function and Attention in Adult Patients With ADHD. Front Psychiatry 10, 132, https://doi.org/10.3389/fpsyt.2019.00132 (2019).

  • 32.

    McMorris, T., Collard, K., Corbett, J., Dicks, M. & Swain, J. P. A test of the catecholamines hypothesis for an acute exercise-cognition interaction. Pharmacol Biochem Behav 89, 106–115, https://doi.org/10.1016/j.pbb.2007.11.007 (2008).

  • 33.

    Chmura, J., Nazar, K. & Kaciuba-Uscilko, H. Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. Int J Sports Med 15, 172–176, https://doi.org/10.1055/s-2007-1021042 (1994).

  • 34.

    Anish, E. J. Exercise and its effects on the central nervous system. Curr Sports Med Rep 4, 18–23 (2005).

  • 35.

    Skriver, K. et al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem 116, 46–58, https://doi.org/10.1016/j.nlm.2014.08.004 (2014).

  • 36.

    Winter, B. et al. High impact running improves learning. Neurobiol Learn Mem 87, 597–609, https://doi.org/10.1016/j.nlm.2006.11.003 (2007).

  • 37.

    Querido, J. S. & Sheel, A. W. Regulation of cerebral blood flow during exercise. Sports Med 37, 765–782 (2007).

  • 38.

    McAuley, E., Kramer, A. F. & Colcombe, S. J. Cardiovascular fitness and neurocognitive function in older adults: a brief review. Brain Behav Immun 18, 214–220 (2004).

  • 39.

    Smith, J. C., Paulson, E. S., Cook, D. B., Verber, M. D. & Tian, Q. Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: implications for fMRI. J Neurosci Methods 191, 258–262, https://doi.org/10.1016/j.jneumeth.2010.06.028 (2010).

  • 40.

    Hiura, M., Mizuno, T. & Fujimoto, T. Cerebral oxygenation in the frontal lobe cortex during incremental exercise tests: the regional changes influenced by volitional exhaustion. Adv Exp Med Biol 662, 257–263, https://doi.org/10.1007/978-1-4419-1241-1_37 (2010).

  • 41.

    Seifert, T. & Secher, N. H. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 95, 406–426, https://doi.org/10.1016/j.pneurobio.2011.09.008 (2011).

  • 42.

    Alvarez, J. A. & Emory, E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16, 17–42, https://doi.org/10.1007/s11065-006-9002-x (2006).

  • 43.

    Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14, 125–130 (2003).

  • 44.

    Dishman, R. K. et al. Neurobiology of exercise. Obesity (Silver Spring) 14, 345–356, https://doi.org/10.1038/oby.2006.46 (2006).

  • 45.

    Meeusen, R., Piacentini, M. F. & De Meirleir, K. Brain microdialysis in exercise research. Sports Med 31, 965–983 (2001).

  • 46.

    Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20, 2580–2590, https://doi.org/10.1111/j.1460-9568.2004.03720.x (2004).

  • 47.

    Chen, A. G., Zhu, L. N., Yan, J. & Yin, H. C. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children. Front Psychol 7, 1804, https://doi.org/10.3389/fpsyg.2016.01804 (2016).

  • 48.

    Li, L. et al. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students. PLoS One 9, e99222, https://doi.org/10.1371/journal.pone.0099222 (2014).

  • 49.

    MacIntosh, B. J. et al. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS One 9, e85163, https://doi.org/10.1371/journal.pone.0085163 (2014).

  • 50.

    Mehren, A. et al. Intensity-Dependent Effects of Acute Exercise on Executive Function. Neural Plast 2019, 8608317, https://doi.org/10.1155/2019/8608317 (2019).

  • 51.

    Aron, A. R. The neural basis of inhibition in cognitive control. The neuroscientist 13, 214–228 (2007).

  • 52.

    Nigg, J. T. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull 126, 220–246 (2000).

  • 53.

    Brydges, C. R. et al. Dissociable components of cognitive control: an event-related potential (ERP) study of response inhibition and interference suppression. PLoS One 7, e34482, https://doi.org/10.1371/journal.pone.0034482 (2012).

  • 54.

    Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E. & Puhse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 53, 1611–1626, https://doi.org/10.1111/psyp.12736 (2016).

  • 55.

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed.Washington, DC: American Psychiatric Association (1994).

  • 56.

    Rösler, M., Retz-Junginger, P., Retz, W. & Stieglitz, R. HASE–Homburger ADHS-Skalen für Erwachsene. Göttingen: Hogrefe (2008).

  • 57.

    Retz-Junginger, P. et al. Wender Utah rating scale. The short-version for the assessment of the attention-deficit hyperactivity disorder in adults. Der Nervenarzt 73, 830–838 (2002).

  • 58.

    Conners, C. K. et al. Self-ratings of ADHD symptoms in adults I: Factor structure and normative data. Journal of Attention Disorders 3, 141–151 (1999).

  • 59.

    Franke, G. H., Derogatis, L. R. Die Symptom-Checkliste von Derogatis: SCL-90-R. Beltz Test (1995).

  • 60.

    Wittchen, H.-U., Zaudig, M. & Fydrich, T. Skid. Strukturiertes klinisches Interview für DSM-IV. Achse I und II. Handanweisung (1997).

  • 61.

    First, M. B., Benjamin, L. S., Gibbon, M., Spitzer, R. L. & Williams, J. B. Structured clinical interview for DSM-IV Axis II personality disorders. (American Psychiatric Press, 1997).

  • 62.

    Beck, A. T., Steer, R. A. & Brown, G. K. Beck depression inventory-II. San Antonio 78, 490–498 (1996).

  • 63.

    World Medical Association. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 310, 2191–2194, https://doi.org/10.1001/jama.2013.281053 (2013).

  • 64.

    American College of Sports, M., Riebe, D., Ehrman, J. K., Liguori, G. & Magal, M. ACSM’s guidelines for exercise testing and prescription (2018).

  • 65.

    Verburgh, L., Konigs, M., Scherder, E. J. & Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br J Sports Med 48, 973–979, https://doi.org/10.1136/bjsports-2012-091441 (2014).

  • 66.

    Dziobek, I. et al. Introducing MASC: a movie for the assessment of social cognition. J Autism Dev Disord 36, 623–636, https://doi.org/10.1007/s10803-006-0107-0 (2006).

  • 67.

    RStudio Team. RStudio: Integrated Development for R (2015).

  • 68.

    Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics. (Peninsula Publishing, 1988).

  • 69.

    Kenemans, J. L. et al. Attention deficit and impulsivity: selecting, shifting, and stopping. Int J Psychophysiol 58, 59–70, https://doi.org/10.1016/j.ijpsycho.2005.03.009 (2005).

  • 70.

    Simmonds, D. J., Pekar, J. J. & Mostofsky, S. H. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46, 224–232, https://doi.org/10.1016/j.neuropsychologia.2007.07.015 (2008).

  • 71.

    Zhang, R., Geng, X. & Lee, T. M. C. Large-scale functional neural network correlates of response inhibition: an fMRI meta-analysis. Brain Struct Funct 222, 3973–3990, https://doi.org/10.1007/s00429-017-1443-x (2017).

  • 72.

    Ridderinkhof, K. R., van den Wildenberg, W. P., Segalowitz, S. J. & Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn 56, 129–140, https://doi.org/10.1016/j.bandc.2004.09.016 (2004).

  • 73.

    Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R. & Eickhoff, S. B. Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 48, 22–34, https://doi.org/10.1016/j.neubiorev.2014.11.003 (2015).

  • 74.

    Mehta, M. A. et al. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20, RC65 (2000).

  • 75.

    Booth, J. R. et al. Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry 46, 94–111, https://doi.org/10.1111/j.1469-7610.2004.00337.x (2005).

  • 76.

    Matthews, S. C., Simmons, A. N., Arce, E. & Paulus, M. P. Dissociation of inhibition from error processing using a parametric inhibitory task during functional magnetic resonance imaging. Neuroreport 16, 755–760 (2005).

  • 77.

    Menon, V., Adleman, N. E., White, C. D., Glover, G. H. & Reiss, A. L. Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp 12, 131–143 (2001).

  • 78.

    Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. & Stein, E. A. Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 17, 1820–1829 (2002).

  • 79.

    Maguire, R. P. et al. Evidence of enhancement of spatial attention during inhibition of a visuo-motor response. Neuroimage 20, 1339–1345, https://doi.org/10.1016/S1053-8119(03)00402-6 (2003).

  • 80.

    Behrmann, M., Geng, J. J. & Shomstein, S. Parietal cortex and attention. Curr Opin Neurobiol 14, 212–217, https://doi.org/10.1016/j.conb.2004.03.012 (2004).

  • 81.

    Katsuki, F. & Constantinidis, C. Bottom-up and top-down attention: different processes and overlapping neural systems. Neuroscientist 20, 509–521, https://doi.org/10.1177/1073858413514136 (2014).

  • 82.

    Olk, B., Peschke, C. & Hilgetag, C. C. Attention and control of manual responses in cognitive conflict: Findings from TMS perturbation studies. Neuropsychologia 74, 7–20, https://doi.org/10.1016/j.neuropsychologia.2015.02.008 (2015).

  • 83.

    Rushworth, M. F., Johansen-Berg, H., Gobel, S. M. & Devlin, J. T. The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(Suppl 1), S89–100 (2003).

  • 84.

    Shomstein, S. & Gottlieb, J. Spatial and non-spatial aspects of visual attention: Interactive cognitive mechanisms and neural underpinnings. Neuropsychologia 92, 9–19, https://doi.org/10.1016/j.neuropsychologia.2016.05.021 (2016).

  • 85.

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3, 201–215, https://doi.org/10.1038/nrn755 (2002).

  • 86.

    Chen, T. L. et al. Effects of somatosensory stimulation and attention on human somatosensory cortex: an fMRI study. Neuroimage 53, 181–188, https://doi.org/10.1016/j.neuroimage.2010.06.023 (2010).

  • 87.

    Haldane, M., Cunningham, G., Androutsos, C. & Frangou, S. Structural brain correlates of response inhibition in Bipolar Disorder I. J Psychopharmacol 22, 138–143, https://doi.org/10.1177/0269881107082955 (2008).

  • 88.

    Haller, S. et al. Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI. MAGMA 18, 263–271, https://doi.org/10.1007/s10334-005-0010-2 (2005).

  • 89.

    Schneider, M., Retz, W., Coogan, A., Thome, J. & Rosler, M. Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)–a neurological view. Eur Arch Psychiatry Clin Neurosci 256(Suppl 1), i32–41, https://doi.org/10.1007/s00406-006-1005-3 (2006).

  • 90.

    Ramos-Quiroga, J. A. et al. [The neuroanatomy of attention deficit hyperactivity disorder in adults: structural and functional neuroimaging findings]. Rev Neurol 56(Suppl 1), S93–106 (2013).

  • 91.

    Fassbender, C. & Schweitzer, J. B. Is there evidence for neural compensation in attention deficit hyperactivity disorder? A review of the functional neuroimaging literature. Clin Psychol Rev 26, 445–465, https://doi.org/10.1016/j.cpr.2006.01.003 (2006).

  • 92.

    Cai, W., Griffiths, K., Korgaonkar, M. S., Williams, L. M. & Menon, V. Inhibition-related modulation of salience and frontoparietal networks predicts cognitive control ability and inattention symptoms in children with ADHD. Mol Psychiatry, https://doi.org/10.1038/s41380-019-0564-4 (2019).

  • 93.

    Carter Leno, V. et al. Testing the specificity of executive functioning impairments in adolescents with ADHD, ODD/CD and ASD. Eur Child Adolesc Psychiatry 27, 899–908, https://doi.org/10.1007/s00787-017-1089-5 (2018).

  • 94.

    Kramer, A. F. & Erickson, K. I. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci 11, 342–348, https://doi.org/10.1016/j.tics.2007.06.009 (2007).

  • 95.

    Erickson, K. I. & Kramer, A. F. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br J Sports Med 43, 22–24, https://doi.org/10.1136/bjsm.2008.052498 (2009).

  • 96.

    Voss, M. W. et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun 28, 90–99, https://doi.org/10.1016/j.bbi.2012.10.021 (2013).

  • Source link


    Please enter your comment!
    Please enter your name here