The SLC6A3 gene polymorphism is related to the development of attentional functions but not to ADHD


  • 1.

    Giesen, C., Frings, C. & Rothermund, K. Differences in the strength of distractor inhibition do not affect distractor-response bindings. Mem Cognit 40(3), 373–87 (2012).

  • 2.

    Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu Rev Neurosci. 13, 25–42 (1990).

  • 3.

    Posner, M. I. & Rothbart, M. K. Research on attention networks as a model for the integration of psychological science. Annu Rev in Psychol. 58, 1–23 (2007).

  • 4.

    Schneider, K. K., Schote, A. B., Meyer, J. & Frings, C. Genes of the dopaminergic system selectively modulate top-down but not bottom-up attention. Cogn Affect Behav Neurosci. 15(1), 104–16 (2015).

  • 5.

    Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V. & Pennington, B. F. Validity of the executive function theory of attention deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 57(11), 1336–1346 (2005).

  • 6.

    Banaschewski, T. et al. Towards an understanding of unique and shared pathways in the psychopathophysiology of ADHD. Dev Sci. 8(2), 132–40 (2005).

  • 7.

    Fan, J., Wu, Y., Fossella, J. & Posner, M. I. Assessing the heritability of attentional networks. BMC Neurosci. 2, 14 (2001).

  • 8.

    Posner, M. I., Rothbart, M. K. & Sheese, B. E. Attention genes. Dev Sci. 10(1), 24–29 (2007).

  • 9.

    Money, K. M. & Stanwood, G. D. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 7, 260 (2013).

  • 10.

    Sesack, S. R., Hawrylak, V. A., Matus, C., Guido, M. A. & Levey, A. I. Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci. 18(7), 2697–708 (1998).

  • 11.

    Lewis, D. A. et al. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol. 432(1), 119–36 (2001).

  • 12.

    Hersch, S. M., Yi, H., Heilman, C. J., Edwards, R. H. & Levey, A. I. Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol. 388(2), 211–27 (1997).

  • 13.

    Jones, S. R. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95(7), 4029–34 (1998).

  • 14.

    Mulvihill, K. G. Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem Int. 122, 94–105 (2019).

  • 15.

    Shumay, E., Fowler, J. S. & Volkow, N. D. Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity. PLoS One. 5(6), e11067 (2010).

  • 16.

    McHugh, P. C. & Buckley, D. A. The structure and function of the dopamine transporter and its role in CNS diseases. Vitam Horm. 98, 339–6 (2015).

  • 17.

    Morón, J. A., Brockington, A., Wise, R. A., Rocha, B. A. & Hope, B. T. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22(2), 389–395 (2002).

  • 18.

    Aggarwal, S. & Mortensen, O. V. Overview of monoamine transporters. Curr Protoc Pharmacol. 79, 12.16.1–12.16.17 (2017).

  • 19.

    dela Peña, I., Gevorkiana, R. & Shi, W. X. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. Eur J Pharmacol. 764, 562–70 (2015).

  • 20.

    Simmler, L. D. & Liechti, M. E. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. Handb Exp Pharmacol. 252, 143–164 (2018).

  • 21.

    Pantoni, M. M., Carmack, S. A., Hammam, L. & Anagnostaras, S. G. Dopamine and norepinephrine transporter inhibition for long-term fear memory enhancement. Behav Brain Res. 378, 112266 (2020).

  • 22.

    Mitchell, R. J. et al. Distribution of the 3′ VNTR polymorphism in the human dopamine transporter gene in world populations. Human Biol. 72(2), 295–304 (2000).

  • 23.

    Inoue-Murayama, M. et al. Variation of variable number of tandem repeat sequences in the 3′-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci Lett. 334(3), 206–10 (2002).

  • 24.

    Costa, A., Riedel, M., Müller, U., Möller, H. J. & Ettinger, U. Relationship between SLC6A3 genotype and striatal dopamine transporter availability: a meta-analysis of human single photon emission computed tomography studies. Synapse. 65(10), 998–1005 (2011).

  • 25.

    Faraone, S. V., Spencer, T. J., Madras, B. K., Zhang-James, Y. & Biederman, J. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry. 19(8), 880–9 (2014).

  • 26.

    Fossella, J. et al. Assessing the molecular genetics of attention networks. BMC Neurosci. 3, 14 (2002).

  • 27.

    Cornish, K. M. et al. Association of the dopamine transporter (DAT1) 10/10-repeat genotype with ADHD symptoms and response inhibition in a general population sample. Mol Psychiatry. 10(7), 686–98 (2005).

  • 28.

    Gizer, I. R. & Waldman, I. D. Double dissociation between lab measures of inattention and impulsivity and the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4). J Abnorm Psychol. 121(4), 1011–23 (2012).

  • 29.

    Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L. & Posner, M. I. Training, maturation, and genetic influences on the development of executive attention. Proc Natl Acad Sci USA 102(41), 14931–6 (2005).

  • 30.

    Ettinger, U., Mertena, N. & Kambeitz, J. Meta-analysis of the association of the SLC6A3 3ˊ-UTR VNTR with cognition. Neurosci Biobehav Rev. 60, 72–81 (2016).

  • 31.

    Yang, B. et al. A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 144B(4), 541–50 (2007).

  • 32.

    Brown, A. B. et al. Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks. Psychiatry Res. 193(1), 7–16 (2011).

  • 33.

    Barkley, R. A., Smith, K. M., Fischer, M. & Navia, B. An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH TaqI A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. Am J Med Genet B Neuropsychiatr Genet. 141B(5), 487–98 (2006).

  • 34.

    Agudelo, J. A. et al. Evidence of an association between 10/10 genotype of DAT1 and endophenotypes of attention deficit/hyperactivity disorder. Neurologia. 30(3), 137–43 (2015).

  • 35.

    Bellgrove, M. A., Hawi, Z., Kirley, A., Gill, M. & Robertson, I. H. Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia. 43(13), 1847–57 (2005).

  • 36.

    Bonvicini, C., Faraone, S. V. & Scassellati, C. Common and specific genes and peripheral biomarkers in children and adults with attention-deficit/hyperactivity disorder. World J Biol Psychiatry. 19(2), 80–100 (2018).

  • 37.

    Shumay, E., Chen, J., Fowler, J. S. & Volkow, N. D. Genotype and ancestry modulate brain’s DAT availability in healthy humans. PLoS ONE. 6, e22754 (2011).

  • 38.

    Larsson, H., Lichtenstein, P. & Larsson, J. O. Genetic contributions to the development of ADHD subtypes from childhood to adolescence. J Am Acad Child Adolesc Psychiatry. 45(8), 973–81 (2006).

  • 39.

    Giertuga, K. et al. Age-related changes in resting-state EEG activity in attention deficit/hyperactivity disorder: a cross-sectional study. Front Hum Neurosci. 11, 285 (2017).

  • 40.

    Wolańczyk, T., & Kołakowski, A. Kwestionariusze do diagnozy ADHD i zaburzeń zachowania [The diagnostic structured interview for ADHD and conduct disorder]. Warsaw, Poland: Janssen-Cilag (2005).

  • 41.

    Vandenbergh, D. J. et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 14, 1104–1106 (1992).

  • 42.

    Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T. & Yiend, J. ‘Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia. 35(6), 747–58 (1997).

  • 43.

    Posner, M. I. Orienting of attention. Q J Exp Psychol. 41A, 19–45 (1980).

  • 44.

    Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 16, 143–149 (1974).

  • 45.

    Fan, J., McCandliss, B. D., Sommer, T., Raz, A. & Posner, M. I. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 14, 340–347 (2002).

  • 46.

    Manly, T., Robertson, I. H., Anderson, V. & Nimmo-Smith, I. The Test of Everyday Attention for Children (TEA-Ch). Bury, UK: Thames Valley Test Company (1998).

  • 47.

    Long, J. S. & Ervin, L. H. Using heteroscedasticity consistent standard errors in the linear regression model. Am Stat. 54(3), 217–224 (2000).

  • 48.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, (2017).

  • 49.

    Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods 41, 1149–1160 (2009).

  • 50.

    Oh, K. S., Shin, D. W., Oh, G. T. & Noh, K. S. Dopamine transporter genotype influences the attention deficit in Korean boys with ADHD. Yonsei Med J. 44(5), 787–92 (2003).

  • 51.

    Grünblatt, E., Werling, A. M., Roth, A., Romanos, M. & Walitza, S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. Journal of Neural Transmission 126(4), 517–529 (2019).

  • 52.

    Parasuraman, R., Greenwood, P. M., Kumar, R. & Fossella, J. Beyond heritability: Neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychol Sci. 16, 200–207 (2005).

  • 53.

    Lundwall, R. A., Guo, D. C. & Dannemiller, J. L. Exogenous visual orienting is associated with specific neurotransmitter genetic markers: a population-based genetic association study. PLoS One. 7(2), e30731 (2012).

  • 54.

    Lundwall, R. A., Dannemiller, J. L. & Goldsmith, H. H. Genetic associations with reflexive visual attention in infancy and childhood. Dev Sci. 20(3), 10.1111/desc.12371 (2017).

  • 55.

    Wager, T. D., Jonides, J. & Reading, S. Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage. 22(4), 1679–93 (2004).

  • 56.

    Logue, S. F. & Gould, T. J. The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacol Biochem Behav. 123, 45–54 (2014).

  • 57.

    Cybulska-Klosowicz, A., Laczkowska, M., Zakrzewska, R. & Kaliszewska, A. Attentional deficits and altered neuronal activation in medial prefrontal and posterior parietal cortices in mice with reduced dopamine transporter levels. Mol Cell Neurosci. 85, 82–92 (2017).

  • 58.

    Cybulska-Klosowicz, A., Dabrowska, J., Niedzielec, S., Zakrzewska, R. & Rozycka, A. Potential role of dopamine transporter in behavioral flexibility. Acta Neurobiol Exp (Wars). 77(2), 176–189 (2017).

  • 59.

    Garcia-Garcia, M., Barceló, F., Clemente, I. C. & Escera, C. The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. Eur J Neurosci. 1, 754–760 (2010).

  • 60.

    Yen, C. H. et al. Reduced dopamine transporter availability and neurocognitive deficits in male patients with alcohol dependence. PLoS One, 10(6), e0131017 (2015).

  • 61.

    VanNess, S. H., Owens, M. J. & Kilts, C. D. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet. 6, 55 (2005).

  • 62.

    Brookes, K. J. et al. Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. Am J Med Genet B Neuropsychiatr Genet. 144B, 1070–8 (2007).

  • 63.

    Wonodi, I. et al. Dopamine transporter polymorphism modulates oculomotor function and DAT1 mRNA expression in schizophrenia. Am J Med Genet B 150, 282–289 (2009).

  • 64.

    Rueda, M. R. et al. Development of attentional networks in childhood. Neuropsychologia. 42, 1029–1040 (2004).

  • 65.

    Suades-González, E. et al. A longitudinal study on attention development in primary school children with and without teacher-reported symptoms of ADHD. Front Psychol. 8, 655 (2017).

  • 66.

    Romine, C. B. & Reynolds, C. R. A model of the development of frontal lobe functioning: findings from a meta-analysis. Appl Neuropsychol. 12(4), 190–201 (2005).

  • 67.

    Ruff, H. & Rothbart, M. K. Attention in Early Development. New York: Oxford University Press (2001).

  • 68.

    Manly, T. et al. The differential assessment of children’s attention: the Test of Everyday Attention for Children (TEA-Ch), normative sample and ADHD performance. J Child Psychol Psychiatry. 42(8), 1065–81 (2001).

  • 69.

    Betts, J., McKay, J., Maruff, P. & Anderson, V. The development of sustained attention in children: The effect of age and task load. Child Neuropsychol. 12, 205–221 (2006).

  • 70.

    Mullane, J. C., Corkum, P. V., Klein, R. M., McLaughlin, E. N. & Lawrence, M. A. Alerting, orienting, and executive attention in children with ADHD. J Atten Disord. 15(4), 310–20 (2011).

  • 71.

    Posner, M. I., & Raichle, M. E. Images of mind. New York Scientific American Library. New York : Scientific American Library (1994).

  • 72.

    Castellanos, F. X. et al. Varieties of attention-deficit/hyperactivity disorder related intra-individual variability. Biol Psychiatry. 57(11), 1416–1423 (2005).

  • 73.

    Seidel, W. & Joshko, M. Evidence of difficulties in sustained attention in children with ADHD. J Abnorm Psychol. 18, 217–229 (1990).

  • 74.

    Castellanos, F. X. & Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 3(8), 617–28 (2002).

  • 75.

    Heaton, S. C. et al. The Test of Everyday Attention for Children (TEA-Ch): patterns of performance in children with ADHD and clinical controls. Child Neuropsychol. 4, 251–64 (2001).

  • 76.

    Lemiere, J. et al. Are children with ADHD predominantly inattentive and combined subtypes different in terms of aspects of everyday attention? Eur Child Adolesc Psychiatry. 19(8), 679–685 (2010).

  • 77.

    Wåhlstedt, C., Thorell, L. B. & Bohlin, G. Heterogeneity in A DHD: neuropsychological pathways, comorbidity and symptom domain. J Abnorm Child Psychol. 37, 551–564 (2009).

  • 78.

    Sonuga-Barke, E., Bitsakou, P. & Thompson, M. Beyond the dual pathway model: evidence for the dissociation of timing, inhibitory, and delay-related impairments in Attention-deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry. 49(4), 345–55 (2010).

  • 79.

    Sonuga-Barke, E. J. Psychological heterogeneity in AD/HD-a dual pathway model of behaviour and cognition. Behav Brain Res. 130(1-2), 29–36 (2002).

  • 80.

    Sergeant, J. A., Geurts, H., Huijbregts, S., Scheres, A. & Oosterlaan, J. The top and the bottom of ADHD: a neuropsychological perspective. Neurosci Biobehav Rev. 27, 583–592 (2003).

  • 81.

    Todd, R. D. et al. No association of the dopamine transporter gene 3′ VNTR polymorphism with ADHD subtypes in a population sample of twins. Am J Med Genet. 105(8), 745–8 (2001).

  • 82.

    Childress, A. et al. A Single-Dose, Single-Period Pharmacokinetic Assessment of an Extended-Release Orally Disintegrating Tablet of Methylphenidate in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol. 26(6), 505–12 (2016).

  • 83.

    Childress, A. C., Kollins, S. H., Cutler, A. J., Marraffino, A. & Sikes, C. R. Efficacy, safety, and tolerability of an extended-release orally disintegrating methylphenidate tablet in children 6-12 years of age with Attention-Deficit/Hyperactivity Disorder in the laboratory classroom setting. J Child Adolesc Psychopharmacol. 27(1), 66–74 (2017).

  • 84.

    Tucha, O. et al. Effects of methylphenidate on multiple components of attention in children with attention deficit hyperactivity disorder. Psychopharmacology (Berl). 185(3), 315–26 (2006).

  • 85.

    Kambeitz, J., Romanos, M. & Ettinger, U. Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. Pharmacogenomics J. 14(1), 77–84 (2014).

  • Source link


    Please enter your comment!
    Please enter your name here